Solving parabolic equations on the unit sphere via Laplace transforms and radial basis functions
نویسندگان
چکیده
We propose a method to construct numerical solutions of parabolic equations on the unit sphere. The time discretization uses Laplace transforms and quadrature. The spatial approximation of the solution employs radial basis functions restricted to the sphere. The method allows us to construct high accuracy numerical solutions in parallel. We establish L2 error estimates for smooth and nonsmooth initial data, and describe some numerical experiments.
منابع مشابه
Numerical solution of a parabolic equation on the sphere using Laplace transforms and RBFs
We propose a method to construct numerical solutions of parabolic equations on the unit sphere. The time discretisation uses Laplace transforms and quadrature. The spatial approximation employs radial basis functions (RBFs) restricted to the sphere. The method allows us to construct high accuracy numerical solutions in parallel.
متن کاملNumerical Solution of The Parabolic Equations by Variational Iteration Method and Radial Basis Functions
In this work, we consider the parabolic equation: $u_t-u_{xx}=0$. The purpose of this paper is to introduce the method of variational iteration method and radial basis functions for solving this equation. Also, the method is implemented to three numerical examples. The results reveal that the technique is very effective and simple.
متن کاملTHE COMPARISON OF EFFICIENT RADIAL BASIS FUNCTIONS COLLOCATION METHODS FOR NUMERICAL SOLUTION OF THE PARABOLIC PDE’S
In this paper, we apply the compare the collocation methods of meshfree RBF over differential equation containing partial derivation of one dimension time dependent with a compound boundary nonlocal condition.
متن کاملAutoconvolution equations and generalized Mittag-Leffler functions
This article is devoted to study of the autoconvolution equations and generalized Mittag-Leffler functions. These types of equations are given in terms of the Laplace transform convolution of a function with itself. We state new classes of the autoconvolution equations of the first kind and show that the generalized Mittag-Leffler functions are solutions of these types of equations. In view of ...
متن کاملBoundary Integral Equations on the Sphere with Radial Basis Functions: Error Analysis
Radial basis functions are used to define approximate solutions to boundary integral equations on the unit sphere. These equations arise from the integral reformulation of the Laplace equation in the exterior of the sphere, with given Dirichlet or Neumann data, and a vanishing condition at infinity. Error estimates are proved. Numerical results supporting the theoretical results are presented.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012